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Light scattering observation of nematic director fluctuations in confined geometries can be used to obtain inter-
action parameters of liquid crystals with surfaces. We present the basics of the method and some examples of the
results in planar and cylindrical geometries. These results were obtained after neglecting the coupling of the direc-
tor motion to flow. We give analytical and numerical results of flow effects on director fluctuations in a slab. The
backflow contribution to the effective viscosity is strongly suppressed so that the results for the anchoring energy
remain valid. Modal dispersion relations show an interesting behaviour of avoiding crossings.

Keywords: liquid crystals; nematic fluctuations; light scattering; surface interactions

1. Introduction

Thermally excited director fluctuations are one of the
most prominent manifestations of the nematic order in
liquid crystals. They make even well-ordered samples
appear turbid due to strong scattering of light that is
caused by large amplitude of the fluctuations and large
optical birefringence. The dynamics of fluctuations in
a bulk nematic sample, that is when the wave-length of
the fluctuations of interest is much smaller than the
dimensions of the sample, are governed by nematic
elasticity and viscosity. As the fluctuations are easy
to observe by light scattering techniques, they are one
of the primary probes of the viscoelastic properties
of liquid crystals [1]. By measuring both the intensity
of the scattered light and the relaxation rate of the
fluctuations that can be obtained from the intensity
correlation function of the scattered light, it is in prin-
ciple possible to obtain all the elastic constants and
viscosity parameters of the nematic phase. In practice,
due to the difficulties with determination of absolute
scattering cross-section, one elastic constant must be
obtained by other methods [2–4].

When boundaries are present, the spectrum of the
fluctuations must to some extent depend on interac-
tions of the nematic with the surfaces. The most impor-
tant parameter describing these interactions is surface
anchoring energy, usually taken to be of the Rapini–
Papoular form [5]. It seems reasonable to assume that
the fluctuations would be most strongly affected by
surface anchoring close to the surface. So, an early idea
of how surface anchoring energy could be obtained by
light scattering was investigated by one of the present
authors (M.Č.) and Noel Clark on the occasion of
a very memorable visit of M.Č. to the University of
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Colorado. We analysed the scattering of evanescent
wave in a nematic that occurs when light is totally
internally reflected in a high-index prism immersed in
a nematic liquid crystal [6,7]. Then, evanescent light
wave extends into the nematic only in a submicron
layer and scattering of this wave is sensitive only to
fluctuations in this layer. The result was that while
the scattered spectrum does depend on the anchoring
energy, the dependence is unspecific and is not very
useful to determine the anchoring energy.

The situation is different when nematic liquid crys-
tal is confined, so that at least one dimension is finite,
for example in a slab. Light scattering in a thin nematic
slab was first theoretically and experimentally exam-
ined by Stallinga et al. [8,9]. It was shown that the
spectrum of fluctuations is affected by the anchor-
ing energy when the thickness of the slab becomes
comparable to the so called extrapolation length that
is defined as the ratio of the elastic constant to the
surface anchoring strength. We performed a series of
experiments in which we showed that the anchoring
energy can be very successfully measured by measur-
ing the relaxation time of the fluctuations vs. sample
thickness [10–14]. We also showed that it is also possi-
ble to obtain the surface viscosity both in planar and
cylindrical geometry [15]. This method was later also
used by Škarabot et al. [16].

In all this work it was assumed that the effective
viscosity governing the relaxation rate of the fluctua-
tions is independent of the sample dimensions. This,
however, cannot be entirely correct. The motion of
the director is coupled with the shear velocity of the
fluid, contributing to the dynamics of the director.
This is called the backflow effect. Normally, boundary
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2 M. Čopič et al.

conditions require that the velocity is zero which
should reduce the backflow. In this article, we anal-
yse the fluctuations in a slab with the full equations
of the nemato-dynamics and show how this affects the
experiments.

The plan of the article is as follows. In Section 2,
we will review the simple approach to the dynamics
of fluctuations in a slab and the results on anchor-
ing energy obtained by dynamic light scattering.
In Section 3, we will present new results of the analysis
using the linearised Ericksen–Leslie equations [17–20].

2. Light scattering measurement of anchoring

Nematic fluctuations are overdamped fluctuations of
the direction of the nematic order. In the bulk, they
are characterised by two polarisations giving two dis-
persion branches of the relaxation as a function of the
wave-vector. The first branch is polarised with the pre-
turbed part n1 of the director lying in the plane of the
unperturbed director n0 and the wave-vector q. The
deformation of the nematic director goes from pure
bend for q parallel to n0 to pure splay for q perpendic-
ular to n0. The second mode polarised perpendicularly
to the plane n-q goes from pure bend to pure twist.
Their relaxation rates are given by [1].

1
τi

= Kiq2
⊥ + K3q2

z

ηi
, i = 1, 2 (1a)

η1 = γ1 − (q2
⊥α3 − q2

zα2)2

q4
⊥ηb + q2

⊥q2
z(α1 + α3 + α4 + α5) + q4

zηc
(1b)

η2 = γ1 − q2
zα2

q2
⊥ηa + q2

zηc
(1c)

where K1, K2 and K3 are the splay, bend and
twist elastic constants, αi are Leslie viscosity coef-
ficients, γ1 = α3 − α2 is pure rotational viscosity
and ηa = α4/2, ηb = (α2 + 2α3 + α4 + α5) /2 and ηc =
(−α2 + α4 + α5) /2 are Miesowitz viscosities. The sec-
ond term in the Equations (1b,c) describes the effect of
flow on the effective viscosity. This backflow contribu-
tion is most pronounced for the bend mode and less so
for the splay, due to the relative magnitudes of the rel-
evant Leslie coefficients (|α2| >> |α3|). The pure twist
mode is not coupled to flow. As the Leslie coefficients
are known only for very few substances [2,21,22], the
dependence of the viscous torque on the direction of q
is often neglected and an effective viscosity is used.

Wave-like excitations in any medium that is lim-
ited in one or more dimensions by boundaries, with
some boundary conditions are characterised by a

wave-vector only in the unbounded directions, while
the bounded dimensions give rise to discrete modes.
Except in the case of completely free boundary con-
ditions, even the lowest order mode has a nonzero
value for the frequency or relaxation rate at zero wave-
vector. This mode is most strongly affected by the
boundary conditions and in the case of a nematic slab
can be used to determine the anchoring energy.

Let us consider the simple case of planar orienta-
tion of a nematic liquid crystal in a slab of thickness
2a. Let z-axis be perpendicular to the slab with the ori-
gin in the middle, and let x-axis be in the direction of
n0, the plane of the slab. For now, let us also neglect the
coupling of the director and flow. Then, the equation
for the motion of the director is simply

Ki
∂2ni

∂z2
= ηeff

∂ni

∂t
(2)

where i = 1 for splay and 2 for twist. Anchoring energy
is taken to be of Rapini–Papoular form Wi sin2

φi,
with i denoting either zenithal angle (out-of-plane) for
splay fluctuations or azimuthal for twist. For small
fluctuations, this energy gives rise to boundary condi-
tion

Ki
∂ni

∂z

∣∣∣∣
z=±a

= ±Wi (3)

The solutions to Equations (2) and (3) are ni =
A cos qz exp(−t/τ ) for even modes (sin qz for odd),
with the relaxation rate 1/τ = Kiq2/ηeff . From the
boundary conditions we get that q must satisfy

q tan qa = Wi

Ki
= 1

λi
(4)

here, λ is the extrapolation length. For the more
important case with λ not much smaller than a, a rela-
tively good approximate solution of the transcendental
Equation (4) gives the relaxation time of the lowest
order mode

τ = ηef a
Wi

+ ηef a2

3Ki
(5)

This is the basis for the measurement of the
anchoring energy using light scattering. It is neces-
sary to obtain the relaxation time of the fundamental
mode as a function of the sample thickness 2a. Then
the coefficient of the linear part gives the anchoring
energy, provided that either Ki or ηef are known. It is
also assumed that ηef does not depend on boundaries.

In the experiments, we prepared samples of 5CB in
the form of a wedge with thickness going from 6 µm
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Liquid Crystals 3

to 200 nm. In one case, the orienting layer was rubbed
nylon [13], giving planar orientation. By proper
choice of scattering geometry, both azimuthal W 2

and zenithal W 1 anchoring coefficients were mea-
sured for different rubbing strength. It was found
that the anchoring energies are in the range of 5 ×
10−6J/m2 to 3 × 10−5J/m2. Zenithal anchoring was
about two times stronger than azimuthal. We also
studied the dependence of Wi on temperature [14].
We found that the ratio of the anchoring coefficients
is nearly independent of temperature and equal to
the ratio of the splay and twist elastic constants. The
extrapolation lengths slightly increased close to the
transition to the nematic state. This indicates that the
observed macroscopic anchoring coefficients, which
are essentially defined thorough extrapolation lengths,
result from the following mechanism. Rubbed polymer
surface is only partially ordered, as can be deduced
from the small optical anisotropy of the polymer layer.
So the adsorbed liquid crystal molecules have only a
small degree of order at the surface and the bulk order
is established by bulk elastic interactions through a
layer with thickness of the order of the correlation
length of the surface order. It is worth noting that the
anchoring energy that would result from fully ordered
first adsorbed molecular layer, interacting with the
substrate by Van der Waals force, would be of the order
of 10−2 J/m2.

In another experiment, we looked at aging of the
anchoring strength of poly-(vinyle-cinnamate) [12].
We found that the anchoring strength increases in the
first few days after UV irradiation, probably due to
curing. In these samples, we also found that we have
to add to the description a surface dissipation term
which contributes to the surface torque proportional
to the angular velocity of the director at the surface.
The boundary conditions then become

Ki
∂ni

∂z

∣∣∣∣
z=±a

= ± (Wi + ζ ṅi) (6)

where ζ is a surface dissipation (viscosity) coefficient.
Approximate solution for the relaxation time becomes

τ = ηef a
Wi

+ ηef a2

3Ki
+ ζ

Wi
(7)

We explained this apparent surface viscosity by a
thin layer close to the surface that was contaminated
by the vynil-cinnamate monomers. As these cured, ζ

decreased with time.
Škarabot et al. used the same method to measure

the anchoring strength of 8OCB on DMOAP-
silanated glass [16]. This surfactant produces
homeotropic anchoring. The obtained value for

the anchoring coefficient was quite high, 10−4 J/m2,
and also nearly independent of temperature.

The above considerations are not limited to pla-
nar slab geometry. They similarly apply to cylindrical
geometry. We analysed the dynamics of fluctuations by
light scattering in 5CB in cylindrical pores in polycar-
bonate membranes [11,15]. The pore diameters were
from 25 nm to 400 nm. The anchoring coefficient was
in the range from 3 × 10−6J/m2 close to the isotropic
transition to 5 × 10−5 J/m2 at room temperature.
We also found a surface dissipation coefficient. The
ratio ζ/ηef was of the order of molecular length, indi-
cating that the surface viscosity in this case could be
due to increased dissipation caused by dangling ends
of the polycarbonate chains at the walls of the pores.

The above examples show the advantage of using
light scattering to analyse the interaction of liquid
crystals with surfaces. The most demanding part of
the measurement is to prepare samples with known
varying thickness that is comparable to the extrap-
olation length. Then, one can obtain reliable values
for the anchoring properties of the surface, with lit-
tle additional effort. Both, in-plane and out-of-plane
coefficients can be measured in the same set-up. The
method is also applicable in systems that cannot be
studied by other methods, like in submicron pores or
droplets.

3. Coupling to flow

In the analysis of fluctuations in confined geome-
tries, the coupling of the director motion to the fluid
velocity gradients has been neglected. As evident from
Equation (1), this coupling changes the effective vis-
cosity and dependence of the relaxation rate on the
direction of the wave-vector. One expects that in a
finite geometry, the flow is reduced due to the condi-
tion that the velocity at the boundaries must be zero.
So, it is necessary to find the properties of the fluctu-
ation modes in a confined geometry, especially for the
case of a slab as this is used to determine the anchoring
energy.

We start from linearised Ericksen–Leslie equations.
Like in the bulk, the fluctuation modes have two
branches – the bend-splay and the bend-twist one. Let
us restrict the analysis to the more interesting case of
the bend-splay mode and start with the homeotropic
orientation so that the fluctuation that is homogeneous
in the plane of the slab is a pure bend. As before, let
the z-axis be normal to the slab and x in the plane
of the slab. We put the origin in the middle of the
slab with thickness 2a. Then, the fluctuating compo-
nent of the director is nx and the relevant velocity
components vx and vz. Then, the linearised form of the
Ericksen–Leslie equations is
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4 M. Čopič et al.

γ1

[
ṅx − 1

2

(
∂vz

∂x
+ ∂vx

∂z

)]
= K1

∂2nx

∂x2

+ K3
∂2nx

∂z2
− 1

2
(α2 + α3)

(
∂vz

∂x
+ ∂vx

∂z

) (8a)

− ∂p
∂x

+ α2
∂ ṅx

∂z
+ η3

∂2vx

∂z2

+ 1
2

(α2 + α4 + α5)
∂2vz

∂x∂z
+ α4

∂2vx

∂x2
= 0

(8b)

− ∂p
∂z

+ α3
∂ ṅx

∂x
+ 1

2
(α2 + 2α3 + α4 + α5)

∂2vz

∂x2

+ 1
2

(α2 + α4 + α5)
∂2vx

∂x∂z

+ (α1 + α2 + α3 + α4 + 2α5)
∂2vz

∂z2
= 0

(8c)

∇ · v = 0. (8d)

The first equation is the balance of torques, the
second two are what remains of the momentum bal-
ance after neglecting inertia and linearisation and the
last equation is the incompressibility condition which
also requires that the pressure is included in the equa-
tions. K1 is the splay and K3 is the bend elastic
constant, and αi are the five Leslie coefficients. The
Parodi relation α6 = α2 + α3 + α5 has been used [23].
The pure rotational viscosity satisfies γ1 = α3 − α2 > 0
as α2 < 0. We also introduce the combination η13 =
(α1 + α3 + α4 + α5). In addition to Equations (8), we
also have the boundary conditions that v(x,±a) =
0 and nx(x,±a) = 0.

Let us first look at the fluctuations homogeneous
in the plane of the slab. Then, vz = 0 everywhere, and
nx and vx are functions of z only. Pressure can be taken
to be constant. Then, the resulting equations are

γ1ṅx = K3
∂2nx

∂z2
− α2vx (9a)

α2
∂ ṅx

∂z
+ ηc

∂2vx

∂z2
= 0 (9b)

nx (a) = 0 vx (a) = 0 (9c)

The time dependence must be exponentially decay-
ing with a rate 1/τ . Equation (9) can be integrated and
give

nx = A (cos qz − cos qa) (10a)

vx = A
γ1

α2τ

(
α2

2

γ1ηc

1
q

sin qz − z cos qa
)

(10b)

The relaxation rate is given by the relation

1
τ

(
γ1 − α2

2

ηc

)
= K3q2 (11)

and the transverse wave-number q must satisfy the
transcendental equation

β tan qa = qa with β = α2
2

ηcγ1
(12)

Parameter β must be smaller than 1 and is for
known cases more than 0.5. For this range, a very good
approximate solution is

q2 = 5
6 − β

(1 − β)
3
a2

(13)

giving the relaxation rate

1
τ

= 5
6 − β

3
a2

K3

γ1
(14)

Equation (14) is close to the result completely neglect-
ing the coupling to flow

1
τ

= K3

γ1

( π

2a

)2

So, we see that for the pure bend fluctuation,
the backflow is strongly reduced, but not completely
absent.

Higher order roots of Equation (12), giving q for
even modes, and of corresponding equation for odd
modes rapidly tend to nπ/(2a), so that according to
Equation (11) the relaxation rate becomes equal to the
bulk one.

Next, we look at the dispersion of the mode relax-
ation rate for finite wave-number in the plane qx.
All the variables are of the form nx = e−t/teiqxxnx (z).
We can eliminate pressure and vx from Equation (11)
to arrive at the system of equations

i
τ

(
α3q3

xnx + α2n′′
x

) + ηbq4
xvz − η13q2

xv′′
z + η3vIV

z = 0

(15a)

qx

(γ1

τ
− K1q2

x

)
nx + K3qxn′′

x − iα3q2
xvz − iα2v′′

z = 0

(15b)

with boundary conditions nx (a) = 0, vz (a) =
0 and v′

z (a) = 0.
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Liquid Crystals 5

The solution for the fundamental mode is even in z
and can be taken in the form

[
nx

vz

]
=

3∑
i=1

[
Ai

Bi

]
cos qiz (16)

qi
2 are roots of a third degree polynomial resulting

from the determinant of the system (15). They depend
on the still unknown τ . To satisfy the boundary condi-
tions we get the determinant

∣∣∣∣∣
Ai cos qia
Bi cos qia

−Biqi sin qia

∣∣∣∣∣ = 0 i = 1, 2, 3 (17)

This is a transcendental equation for τ at given
values for the three roots qi. The solutions to
Equations (16) and (17) can be found numerically
by expressing the coefficients of the characteristic
polynomial in terms of roots, for example c2/c3 =
− (

q2
1 + q2

2 + q2
3

)
, and then solving the resulting system

of four nonlinear equations for q2
i and τ .

To present the results, we choose values for the
parameters that would be expected in a typical mate-
rial. We set the bend elastic constant K3 and rota-
tional viscosity γ 1 to be 1. Then, K1 = 1.5, α1 =
−0.08, α2 = −1.04, α3 = −0.04, α4 = 0.92 and α5 =
0.5. We also take a = 1.

One of the roots q2
i is always negative and becomes

quite large, while the other two can be real or com-
plex, so the director and velocity profile through the
slab is a combination of cosine and hyperbolic cosine
functions.

The results for the dependence of the relaxation
rate on qx is shown in Figure 1. At small val-
ues of qx, the relaxation rate is substantially slower
than expected from the bulk expression (1) but
monotonously approaches the bulk value for qx > 1/a.

50

40

301/
τ

20

10

0
0 1 2 3

qx

4 5 6

Figure 1. (colour online) The relaxation rate of the fun-
damental band-splay branch of fluctuations vs. qx in
homeotropic orientation. Broken line – bulk expression with
qz = π/ (2a). Units of qx are 1/a.

nx

vx

vz

z

Figure 2. (colour online) Director deviation and velocity
components profiles through the cell at qx = 0.5. vx remains
finite at qx = 0, while vz goes to zero.

Figure 2 shows the director and velocity profile
through the slab at a small value of qx. The in-plane
component of the velocity vx decreases as qx goes to 0,
but remains finite, while vz goes rapidly to 0.

Let us now look at the planar geometry where the
fundamental mode at qx = 0 is a pure splay mode. Due
to the small value of α3, the effective viscosity in this
case is nearly unaffected by the backflow and to a very
good approximation equal to γ1. But, as qx increases,
the character of the mode becomes more bend-like and
the effect of flow quenching must show up.

The linearised Ericksen–Leslie equations in this
case are very similar to Equations (8), except that
the fluctuating component of the director is now nz,
α2 and α3 are exchange roles, and instead of ηc we get
ηb. We again have to solve a system of four nonlinear
equations, of which one is transcendental, to get the
roots qi and the relaxation rate.

The solution for the lowest order mode exhibits an
unexpected change of slope at qx between 3 and 4.
So we also calculated higher order modes by choos-
ing for the initial estimate for the relaxation rate and
for the roots appropriate values that can be guessed
from the bulk expression (1) at qz = (2n + 1)π/2 . The
dispersion relations for the even modes of order 1 to
3 are presented in Figure 3. The striking features are
the obvious avoided crossings of the dispersion curves.
We can understand them by looking at the curves that
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6 M. Čopič et al.

300

250

200

1501/
τ

100

50

0
0 1 2 3 4 5

qx

6 7

Figure 3. (colour online) Dispersion curves for the first three
even splay-bend modes in the planar orientation. The inset
shows the prediction of the bulk expression with crossings of
the dispersion curves.

are obtained by using Equation (1) with qz = (2n +
1)π/2. The effective viscosity decreases as the direction
of the wave-vector approaches the unperturbed direc-
tor, and at a given value of qx this happens sooner for
smaller values of qz, resulting in the crossings of the
dispersion curves. The boundary conditions v(a) = 0
perturb the bulk solution so that the degeneracy of
the relaxation rate at the crossing points is removed
and the crossings are avoided. This is similar to the
removal of degeneracy of dispersion relations in quan-
tum mechanics by perturbations, with the difference
that the perturbation in our case is due to boundary
conditions.

The change in the nature of the modes around the
crossing points can be seen in Figure 4, where we plot
nz and velocity profiles for the lowest mode at values
of qx below and above the first crossing point. We see
that the profile of nz changes from having no nodes
to two nodes characteristic of the n = 2 unperturbed
mode. To be noted too is the behaviour of the velocity
close to the boundary where for qx above the cross-
ing, vx approaches zero in a rather thin layer. In a
real sample with thickness of a few micrometres, this
layer would be of the order of 100 nm or even less.
It should be stressed that this is still a completely
hydrodynamic result with the usual non-slip boundary
condition. It is the manifestation of the fact that one
characteristic root for q is imaginary and large so that
the approach to zero is described by hyperbolic cosine.
Correspondingly, the second-order mode crosses over
from two nodes to no nodes.

The odd modes behave very similarly. There the
solutions are of the form sin qiz, with the correspond-
ing change in the determinant Equation (17). We also
obtain that the degeneracy at the crossings of the odd
modes is removed so that they do not cross. The odd

qx = 0.1

qx = 2

qx = 3

qx = 4

qx = 5

z z

nx

vx

vz

Figure 4. (colour online) Director deviation profiles and
velocity profiles of the fundamental mode for values of qx

below and above first crossing point, showing the crossover
from no nodes to two nodes in nz(z). Note the steep approach
of vx to zero at z = a for large value of qx.

and even modes do not mix, so they still cross, as one
expects on grounds of symmetry.

The properties of the modes are important for
experimental observation by light scattering. In such
experiments, the wave-vector components of the
observed fluctuation modes are determined by the
choice of the scattering angle and light polarisation
through birefringence. In samples of finite thickness,
the selected qz have a finite spread of the order of 1/a,
so mode selection cannot be perfect. In our case, the
transverse profile of the modes is not a single cosine
(for even modes, sine for odd), but still the mode that
contribute most to the scattering signal will be the one
with the biggest Fourier component, closest to the z
component of the scattering vector. If this is fixed and
only the x component is changed, above the cross-
ings, the next order mode will dominate the scattering
signal. In the vicinity of the crossings, both modes con-
tribute and as the relaxation rates are close, it would
be more or less impossible to separate them. So, in a
realistic experimental situation, an average of several
modes will be observed.
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Figure 5. (colour online) Relaxation rate of 5CB obtained
by dynamic difference microscopy and light scattering at
room temperature. Sample thickness is 20 nm. Open circles
are light scattering data. Full lines are bulk prediction for
the mode dispersion using known values of the parameters
of 5CB.

Figure 5 shows the results of light scattering and
dynamic differential microscopy (DDM) [24] on a
sample of 5CB, for which the elastic and viscosity
parameters are known. In DDM, the 2D Fourier
transform of the difference of successive polarised
microscope images gives a time sequence of director
fluctuations at a given wave-vector, from which the cor-
relation function with corresponding relaxation rate
can be calculated. The method works very well for
small wave-vectors and slow relaxation rates. Its pri-
mary limitation is the speed of the camera, while the
largest wave-vector is given by the pixel size. Its sub-
stantial advantage is that it is a multichannel method,
giving all the modes with attainable relaxation rates
and wave-vectors simultaneously. So, it complements
well the standard dynamic light scattering where it is
difficult to observe very low q and slow modes. The
obtained data are in reasonable agreement with the
theory.

Until now we have assumed strong anchoring. For
finite anchoring strength, the boundary condition for
the director becomes

Ki
∂nα

∂z

∣∣∣∣
z=±a

= ±W (18)

where i = 1 and α = z for planar anchoring
and splay-bend mode, and i = 3 and α = x for
homeotropic anchoring and bend-splay mode. W is
the anchoring energy. For qx = 0 the interesting case
is homeotropic anchoring where the mode is pure
bend. Equations (10) and (11) are still valid and using

boundary condition (18), we get that q must satisfy the
following transcendental equation

(
qλ + β

qa

)
tan qa = 1 (19)

where λ = K3/W is the extrapolation length. A rather
good approximate solution gives

τ = a2γ1

3K3
+ γ1a

W
(20)

This is the same approximation that was obtained
by completely neglecting the coupling of the director
rotation and flow.

In the case of planar geometry, it is interesting to
see the behaviour of the dispersion relations in the
vicinity of the mixing points. The numerical calcula-
tion proceeds as in the case of strong anchoring. The
calculated dispersion curves are shown in Figure 6.
The lowest order mode relaxation rate is consider-
ably slower than in the case of strong anchoring, as
expected, and the mixing of the first and second mode
is not apparent any more. But, the director and veloc-
ity profiles, shown in Figure 7, show that the character
of the fundamental mode still changes from having no
nodes at small qx to two nodes at larger values of qx.
There vx again goes to zero in a rather thin surface
layer.

The last question we want to address is the
behaviour of the fluctuations in an external field
aligned parallel with the director. Let us consider the
homeotropic case. We have to add to the right side of

200

150

100

50

0
0 1 2 3 4 5 6

qx

1/
τ

Figure 6. (colour online) Dispersion curves for the first three
even modes at finite anchoring for value of λ = a. The funda-
mental branch is everywhere considerably below the second
one.
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qx = 0.1

qx = 4

nx

z z

vx

vz

Figure 7. (colour online) Director deviation profiles and
velocity profiles of the fundamental mode for values of qx

below and above first crossing point at finite anchoring with
λ = a, showing the crossover from no nodes to two nodes in
nz(z).

the Equation (8a) a term of the form εaε0E2nx. In the
bulk case, this gives the well-known expression

1
τ

= Kiq2
i + ε0εaE2

ηeff
(21)

with the same form of the effective viscosity as in the
absence of the field. In our case of the slab, we can
again find a good approximate solution for qx = 0.
Now, the relaxation rate is given by

γ1

τ
(1 − β) = K3q2 + e (22)

where e = εaε0E2. From equations similar to (10) and
the boundary conditions we get that q must satisfy

qa
K3q2 + β e

β
(
K3q2 + e

) = tan qa (23)

A rather good approximate solution for the relaxation
time is

1
τ

= 5
(6 − β) γ1

(
3K3

a2
+ 6

5
ε0εaE2

)
(24)

Equation (24) is accurate to within a few per cent up
to fields for which ε0εaE2 = 10K3/a2 . It is to be noted
that the effective viscosity for the field contribution is
slightly different from the one for the elastic part of the
relaxation rate.

When qx �= 0, numerical calculation shows that the
dependence of the relaxation time on E2 is still nearly
exactly linear with an effective viscosity that is slightly
different than for the elastic contribution. As in field-
free case in Figure 1 it approaches the bulk value for
qx > 1/a.

4. Conclusions

For the fundamental fluctuation mode in a slab, the
backflow contribution to the effective viscosity is
strongly reduced so that the effective viscosity is close
to the pure rotational viscosity γ1, as expected. For
the pure bend mode in homeotropic orientation, the
remaining contribution of backflow is at most about
17%. With increasing transverse wave-number qx the
relaxation rate approaches the value given by the bulk
expression. The dispersion curves for the modes in pla-
nar geometry show crossing avoidance – removal of
crossings and accompanying degeneracy implied by
the bulk expression. The present analysis shows that in
light scattering experiments for obtaining the anchor-
ing parameters, one can assume an effective viscosity
independent of the thickness of the sample and use
the simple expression (5), provided that qxa is kept
constant. This is best achieved by choosing qx = 0.
The dependence of the relaxation rate on applied field
is proportional to E2, as in bulk, with an effective
viscosity which in homeotropic orientation is slightly
different from the one governing the elastic part.
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